markdown KB

This commit is contained in:
2025-09-06 10:23:15 +03:00
parent 0ae505ea11
commit e173556bf7
5 changed files with 239 additions and 343 deletions

View File

@@ -0,0 +1,52 @@
[AIFriendlyLogging]
**Tags:** LOGGING, TRACEABILITY, STRUCTURED_LOG, DEBUG, CLEAN_ARCHITECTURE
> Логирование — это мой критически важный механизм для декларации `belief state` (внутреннего состояния/намерения) и трассировки выполнения кода. Каждая значимая операция, проверка контракта или изменение состояния ДОЛЖНЫ сопровождаться структурированной записью в лог. Это делает поведение кода в рантайме полностью прозрачным и отлаживаемым.
## Rules
### ArchitecturalBoundaryCompliance
Логирование в его прямой реализации (т.е. вызов `logger.info`, `Timber.i` и т.д.) **КАТЕГОРИЧЕСКИ ЗАПРЕЩЕНО** внутри модуля `:domain`.
> `Согласно принципам чистой архитектуры, слой `domain` должен быть полностью независим от внешних фреймворков и платформ (включая Android). Его задача — содержать исключительно бизнес-логику. Логирование, как и другие инфраструктурные задачи, должно выполняться в более внешних слоях, таких как `:data` или `:app`.`
### StructuredLogFormat
Все записи в лог должны строго следовать этому формату для обеспечения машиночитаемости и консистентности.
```
`logger.level("[LEVEL][ANCHOR_NAME][BELIEF_STATE] Message with {} placeholders for data.")`
```
### ComponentDefinitions
#### Components
- **[LEVEL]**: Один из стандартных уровней логирования: `DEBUG`, `INFO`, `WARN`, `ERROR`. Я также использую специальный уровень `CONTRACT_VIOLATION` для логов, связанных с провалом `require` или `check`.
- **[ANCHOR_NAME]**: Точное имя семантического якоря из кода, к которому относится данный лог. Это создает неразрывную связь между статическим кодом и его выполнением. Например: `[ENTRYPOINT]`, `[ACTION]`, `[PRECONDITION]`, `[FALLBACK]`.
- **[BELIEF_STATE]**: Краткое, четкое описание моего намерения в `snake_case`. Это отвечает на вопрос 'почему' я выполняю этот код. Примеры: `validating_input`, `calling_external_api`, `mutating_state`, `persisting_data`, `handling_exception`, `mapping_dto`.
### Example
Вот как я применяю этот стандарт на практике внутри функции:
```kotlin
// ...
// [ENTRYPOINT]
suspend fun processPayment(request: PaymentRequest): Result {
logger.info("[INFO][ENTRYPOINT][processing_payment] Starting payment process for request '{}'.", request.id)
// [PRECONDITION]
logger.debug("[DEBUG][PRECONDITION][validating_input] Validating payment request.")
require(request.amount > 0) { "Payment amount must be positive." }
// [ACTION]
logger.info("[INFO][ACTION][calling_external_api] Calling payment gateway for amount {}."), request.amount)
val result = paymentGateway.execute(request)
// ...
}
```
### TraceabilityIsMandatory
Каждая запись в логе ДОЛЖНА быть семантически привязана к якорю в коде. Логи без якоря запрещены. Это не опция, а фундаментальное требование для обеспечения полной трассируемости потока выполнения.
### DataAsArguments_NotStrings
Данные (переменные, значения) должны передаваться в логгер как отдельные аргументы, а не встраиваться в строку сообщения. Я использую плейсхолдеры `{}`. Это повышает производительность и позволяет системам сбора логов индексировать эти данные.
[/End AIFriendlyLogging]

View File

@@ -0,0 +1,35 @@
[DesignByContractAsFoundation]
**Tags:** DBC, CONTRACT, PRECONDITION, POSTCONDITION, INVARIANT, KDOC, REQUIRE, CHECK
> Принцип 'Проектирование по контракту' (DbC) — это не опция, а фундаментальная основа моего подхода к разработке. Каждая функция и класс, которые я создаю, являются реализацией формального контракта между поставщиком (код) и клиентом (вызывающий код). Это устраняет двусмысленность, предотвращает ошибки и делает код самодокументируемым и предсказуемым.
## Rules
### ContractFirstMindset
Я всегда начинаю с проектирования и написания KDoc-контракта. Код является реализацией этой формальной спецификации. Проверки контракта (`require`, `check`) создаются до или вместе с основной логикой, а не после как запоздалая мысль.
### KDocAsFormalSpecification
KDoc-блок является человекочитаемой формальной спецификацией контракта. Для правильной обработки механизмом Causal Attention, он ВСЕГДА предшествует блоку семантической разметки и декларации функции/класса. Я использую стандартизированный набор тегов для полного описания контракта.
#### Tags
- **@param**: Описывает **предусловия** для конкретного параметра. Что клиент должен гарантировать.
- **@return**: Описывает **постусловия** для возвращаемого значения. Что поставщик гарантирует в случае успеха.
- **@throws**: Описывает условия (обычно нарушение предусловий), при которых будет выброшено исключение. Это часть 'негативного' контракта.
- **@invariant**: (для класса) Явно описывает **инвариант** класса — условие, которое должно быть истинным всегда, когда объект не выполняет метод.
- **@sideeffect**: Четко декларирует любые побочные эффекты (запись в БД, сетевой вызов, изменение внешнего состояния). Если их нет, я явно указываю `@sideeffect Отсутствуют.`.
### PreconditionsWithRequire
Предусловия (обязательства клиента) должны быть проверены в самом начале публичного метода с использованием `require(condition) { "Error message" }`. Это реализует принцип 'Fail-Fast' — немедленный отказ, если клиент нарушил контракт.
**Location:** Первые исполняемые строки кода внутри тела функции, сразу после лога `[ENTRYPOINT]`.
### PostconditionsWithCheck
Постусловия (гарантии поставщика) должны быть проверены в самом конце метода, прямо перед возвратом управления, с использованием `check(condition) { "Error message" }`. Это самопроверка, гарантирующая, что моя работа выполнена правильно.
**Location:** Последние строки кода внутри тела функции, непосредственно перед каждым оператором `return`.
### InvariantsWithInitAndCheck
Инварианты класса (условия, которые всегда должны быть истинны для экземпляра) проверяются в двух местах: в блоке `init` для гарантии корректного создания объекта, и в конце каждого публичного метода, изменяющего состояние, с помощью `check(condition)`.
**Location:** Блок `init` и конец каждого метода-мутатора.
[/End DesignByContractAsFoundation]

View File

@@ -0,0 +1,76 @@
[GraphRAG_Optimization]
**Tags:** GRAPH, RAG, ENTITY, RELATION, ARCHITECTURE, SEMANTIC_TRIPLET
> Этот принцип является моей основной директивой по созданию 'самоописываемого' кода. Я встраиваю явный, машиночитаемый граф знаний непосредственно в исходный код. Цель — сделать архитектуру, зависимости и потоки данных очевидными и запрашиваемыми без необходимости в сложных инструментах статического анализа. Каждый файл становится фрагментом глобального графа знаний проекта.
## Rules
### Entity_Declaration_As_Graph_Nodes
Каждая архитектурно значимая сущность в коде должна быть явно объявлена как **узел (Node)** в нашем графе знаний. Для этого я использую якорь `[ENTITY]`.
**Rationale:** Определение узлов — это первый шаг в построении любого графа. Без явно определенных сущностей невозможно описать связи между ними. Это создает 'существительные' в языке нашей архитектуры.
**Format:** `// [ENTITY: EntityType('EntityName')]`
#### Valid Types
- **Module**: Высокоуровневый модуль Gradle (e.g., 'app', 'data', 'domain').
- **Class**: Стандартный класс.
- **Interface**: Интерфейс.
- **Object**: Синглтон-объект.
- **DataClass**: Класс данных (DTO, модель, состояние UI).
- **SealedInterface**: Запечатанный интерфейс (для состояний, событий).
- **EnumClass**: Класс перечисления.
- **Function**: Публичная, архитектурно значимая функция.
- **UseCase**: Класс, реализующий конкретный сценарий использования.
- **ViewModel**: ViewModel из архитектуры MVVM.
- **Repository**: Класс-репозиторий.
- **DataStructure**: Структура данных, которая не является `DataClass` (e.g., `Pair`, `Map`).
- **DatabaseTable**: Таблица в базе данных Room.
- **ApiEndpoint**: Конкретная конечная точка API.
**Example:**
```kotlin
// [ENTITY: ViewModel('DashboardViewModel')]
class DashboardViewModel(...) { ... }
```
### Relation_Declaration_As_Graph_Edges
Все взаимодействия и зависимости между сущностями должны быть явно объявлены как **ребра (Edges)** в нашем графе знаний. Для этого я использую якорь `[RELATION]` в формате семантического триплета.
**Rationale:** Ребра — это 'глаголы' в языке нашей архитектуры. Они делают неявные связи (как вызов метода или использование DTO) явными и машиночитаемыми. Это позволяет автоматически строить диаграммы зависимостей, анализировать влияние изменений и находить архитектурные проблемы.
**Format:** `// [RELATION: 'SubjectType'('SubjectName')] -> [RELATION_TYPE] -> ['ObjectType'('ObjectName')]`
#### Valid Relations
- **CALLS**: Субъект вызывает функцию/метод объекта.
- **CREATES_INSTANCE_OF**: Субъект создает экземпляр объекта.
- **INHERITS_FROM**: Субъект наследуется от объекта (для классов).
- **IMPLEMENTS**: Субъект реализует объект (для интерфейсов).
- **READS_FROM**: Субъект читает данные из объекта (e.g., DatabaseTable, Repository).
- **WRITES_TO**: Субъект записывает данные в объект.
- **MODIFIES_STATE_OF**: Субъект изменяет внутреннее состояние объекта.
- **DEPENDS_ON**: Субъект имеет зависимость от объекта (e.g., использует как параметр, DTO, или внедряется через DI). Это наиболее частая связь.
- **DISPATCHES_EVENT**: Субъект отправляет событие/сообщение определенного типа.
- **OBSERVES**: Субъект подписывается на обновления от объекта (e.g., Flow, LiveData).
- **TRIGGERS**: Субъект (обычно UI-событие или компонент) инициирует выполнение объекта (обычно функции ViewModel).
- **EMITS_STATE**: Субъект (обычно ViewModel или UseCase) является источником/производителем определённого состояния (DataClass).
- **CONSUMES_STATE**: Субъект (обычно UI-компонент или экран) потребляет/подписывается на определённое состояние (DataClass).
**Example:**
```kotlin
// Пример для ViewModel, который зависит от UseCase и является источником состояния
// [ENTITY: ViewModel('DashboardViewModel')]
// [RELATION: ViewModel('DashboardViewModel')] -> [DEPENDS_ON] -> [UseCase('GetStatisticsUseCase')]
// [RELATION: ViewModel('DashboardViewModel')] -> [EMITS_STATE] -> [DataClass('DashboardUiState')]
class DashboardViewModel @Inject constructor(
private val getStatisticsUseCase: GetStatisticsUseCase
) : ViewModel() { ... }
```
### MarkupBlockCohesion
Вся семантическая разметка, относящаяся к одной сущности (`[ENTITY]` и все ее `[RELATION]` триплеты), должна быть сгруппирована в единый, непрерывный блок комментариев.
**Rationale:** Это создает атомарный 'блок метаданных' для каждой сущности. Это упрощает парсинг и гарантирует, что весь архитектурный контекст считывается как единое целое, прежде чем AI-инструмент приступит к анализу самого кода.
**Placement:** Этот блок всегда размещается непосредственно перед KDoc-блоком сущности или, если KDoc отсутствует, перед самой декларацией сущности.
[/End GraphRAG_Optimization]

View File

@@ -0,0 +1,76 @@
[SemanticLintingCompliance]
**Tags:** LINTING, SEMANTICS, STRUCTURE, ANCHORS, FILE_HEADER, TAXONOMY
> Этот принцип определяет строгие правила структурирования кода, которые превращают его из простого текста в машиночитаемый, 'линтуемый' семантический артефакт. Моя задача — генерировать код, который не просто работает, но и на 100% соответствует этим правилам. Это не рекомендации по стилю, а строгие требования к архитектуре файла.
## Rules
### FileHeaderIntegrity
Каждый `.kt` файл ДОЛЖЕН начинаться со стандартного заголовка из трех якорей, за которым следует объявление `package`. Порядок строгий и не подлежит изменению.
**Rationale:** Этот заголовок служит 'паспортом' файла, позволяя любому инструменту (включая меня) мгновенно понять его расположение, имя и основное назначение, не парся код.
**Example:**
```kotlin
// [PACKAGE] com.example.your.package.name
// [FILE] YourFileName.kt
// [SEMANTICS] ui, viewmodel, state_management
package com.example.your.package.name
```
### SemanticKeywordTaxonomy
Содержимое якоря `[SEMANTICS]` ДОЛЖНО состоять из ключевых слов, выбранных из предопределенного, контролируемого списка (таксономии).
**Rationale:** Это устраняет неоднозначность и обеспечивает консистентность семантического тегирования по всему проекту, делая поиск и анализ на основе этих тегов надежным и предсказуемым.
#### Example Taxonomy
- **Layer**: `ui`, `domain`, `data`, `presentation`
- **Component**: `viewmodel`, `usecase`, `repository`, `service`, `screen`, `component`, `dialog`, `model`, `entity`
- **Concern**: `networking`, `database`, `caching`, `authentication`, `validation`, `parsing`, `state_management`, `navigation`, `di`, `testing`
### EntityContainerization
Каждая ключевая сущность (`class`, `interface`, `object`, `data class`, `sealed class`, `enum class` и каждая публичная `fun`) ДОЛЖНА быть обернута в 'семантический контейнер'. Контейнер состоит из двух частей: открывающего блока разметки ПЕРЕД сущностью и закрывающего якоря ПОСЛЕ нее.
**Rationale:** Это превращает плоский текстовый файл в иерархическое дерево семантических узлов. Это позволяет будущим AI-инструментам надежно парсить, анализировать и рефакторить код, точно зная, где начинается и заканчивается каждая сущность.
**Structure:**
1. **Открывающий Блок Разметки:** Располагается непосредственно перед KDoc/декларацией. Содержит сначала якорь `[ENTITY]`.
2. **Тело Сущности:** KDoc, сигнатура и тело функции/класса.
3. **Закрывающий Якорь:** Располагается сразу после закрывающей фигурной скобки `}` сущности. Формат: `// [END_ENTITY: Type('Name')]`.
**Example:**
```kotlin
// [ENTITY: DataClass('Success')]
/**
* @summary Состояние успеха...
*/
data class Success(val labels: List<Label>) : LabelsListUiState
// [END_ENTITY: DataClass('Success')]
```
### StructuralAnchors
Крупные, не относящиеся к конкретной сущности блоки файла, такие как импорты и главный контракт файла, также должны быть обернуты в парные якоря.
**Rationale:** Это четко разграничивает секции файла, позволяя инструментам работать с ними изолированно (например, 'добавить новый импорт в блок `[IMPORTS]`').
**Pairs:**
- `// [IMPORTS]` и `// [END_IMPORTS]`
- `// [CONTRACT]` и `// [END_CONTRACT]`
### FileTermination
Каждый файл должен заканчиваться специальным закрывающим якорем, который сигнализирует о его полном завершении.
**Rationale:** Это служит надежным маркером конца файла, защищая от случайного усечения и упрощая парсинг.
**Template:** `// [END_FILE_YourFileName.kt]`
### NoStrayComments
Традиционные, 'человеческие' комментарии (`// Вот это сложная логика` или `/* ... */`) КАТЕГОРИЧЕСКИ ЗАПРЕЩЕНЫ.
**Rationale:** Такие комментарии являются 'семантическим шумом' для AI. Они неструктурированы, часто устаревают и не могут быть использованы для автоматического анализа. Вся необходимая информация должна передаваться через семантические якоря или формальные KDoc-контракты.
#### Approved Alternative
В исключительном случае, когда мне нужно оставить заметку для другого AI-агента или для себя в будущем (например, объяснить сложное архитектурное решение), я использую специальный, структурированный якорь:
**Format:** `// [AI_NOTE]: Пояснение сложного решения.`
[/End SemanticLintingCompliance]